资源类型

期刊论文 266

会议视频 1

年份

2023 37

2022 37

2021 40

2020 11

2019 15

2018 19

2017 17

2016 7

2015 12

2014 12

2013 8

2012 7

2011 9

2010 8

2009 8

2008 4

2007 4

2006 2

2005 1

2004 1

展开 ︾

关键词

二氧化碳 2

吸附 2

&alpha 1

Tetrasphaera 1

K波段;高效率;宽带;氮化镓(GaN);功率放大器 1

一氧化碳 1

一维(1D) 1

乙烷干重整 1

亚麻屑纤维素 1

产氧反应 1

产氧缝合线 1

人工防护林带 1

代谢与免疫 1

伤口 1

体变模量 1

作用机制 1

催化剂 1

光催化 1

全层氧气递送 1

展开 ︾

检索范围:

排序: 展示方式:

Activity and characteristics of “Oxygen-enrichedhighly reactive absorbent for simultaneous flue gas

Yi ZHAO,Tianxiang GUO,Zili ZANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 222-229 doi: 10.1007/s11783-014-0636-2

摘要: An “Oxygen-enriched” highly reactive absorbent was prepared by mixing fly ash, lime and a small quantity of KMnO for simultaneous desulfurization and denitrification. Removal of SO and NO simultaneously was carried out using this absorbent in a flue gas circulating fluidized bed (CFB). The highest simultaneous removal efficiency, 94.5% of SO and 64.2% of NO, was achieved under the optimal experiment conditions. Scanning Electron Microscope (SEM) and Accessory X-ray Energy Spectrometer (EDX) were used to observe the surface characteristics of fly ash, lime, “Oxygen-enriched” highly reactive absorbent and the spent absorbent. An ion chromatograph (IC) and chemical analysis methods were used to determine the contents of sulfate, sulfite, nitrate and nitrite in the spent absorbents, the results showed that sulfate and nitrite were the main products for desulfurization and denitrification respectively. The mechanism of removing SO and NO simultaneously was proposed based on the analysis results of SEM, EDX, IC and the chemical analysis methods.

关键词: “Oxygen-enriched” highly reactive absorbent     Surface characteristics     Flue gas circulating fluidized bed     Simultaneous desulfurization and denitrification    

应用先进技术改造传统炼铜产业

孔繁义

《中国工程科学》 2001年 第3卷 第9期   页码 69-76

摘要:

云南冶炼厂(云南铜业股份有限公司)是20世纪60年代初建成的铜精矿电炉熔炼企业。投产以来,存在着能源消耗大,SO2利用率低,环境污染较严重,生产成本高等问题;近20年来,通过持续不断地技术改造和技术创新,特别是采用先进的富氧顶吹熔池熔炼技术取代电炉熔炼工艺,将使传统的炼铜产业获得迅速的提升。预计到2002年,不但在生产规模上成为全国三大铜生产企业之一,而且三废排放将完全达标,实现清洁生产,粗铜电耗可望由2 314 kW·h/t降至1 542 kW·h/t,生产成本会有明显下降,总体实力可进入世界铜工业20强之列。

关键词: 铜工业     电炉熔炼     技术改造     富氧顶吹熔池熔炼    

Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine

K. RAJKUMAR, P. GOVINDARAJAN

《能源前沿(英文)》 2011年 第5卷 第4期   页码 398-403 doi: 10.1007/s11708-011-0157-7

摘要: In the present experiment, a computerized single cylinder diesel engine with a data acquisition system was used to study the effects of oxygen enriched combustion technology (OECT) on the performance characteristics. The use of different levels of oxygen-enriched air was compared with respect to percentage load. Increasing the oxygen content in the air leads to faster burn rates and increases the combustibility at the same stoichiometry (oxygen-to-fuel ratio). These effects have the potential to increase the thermal efficiency and specific power output of a diesel engine. The power increases considerably with oxygen enrichment. In addition, oxygen enrichment can also be considered as a way to reduce the sudden loss in power output when the engine operates in a high load condition. Assessed high combustion temperature from the oxygen enriched combustion leads to high combustion efficiency. OECT reduces the volume of flue gases and reduces the effects of greenhouse effects. Engine tests were conducted in the above said engine for different loads and the following performance characteristics like brake power (BP), specific fuel consumption (SFC), mean effective pressure, brake thermal efficiency, mechanical efficiency, and exhaust gas temperature were studied. The objective of this paper is to address, in a systematic way, the key technical issues associated with applying OECT to single cylinder diesel engines.

关键词: oxygen enriched combustion     exhaust gas temperature     brake power (BP)     specific fuel consumption (SFC)    

Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reductionand oxygen evolution reaction: a density functional theory study

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 570-580 doi: 10.1007/s11705-022-2247-y

摘要: Recently, metal–organic frameworks are one of the potential catalytic materials for electrocatalytic applications. The oxygen reduction reaction and oxygen evolution reaction catalytic activities of heterometallic cluster-based organic frameworks are investigated using density functional theory. Firstly, the catalytic activities of heterometallic clusters are investigated. Among all heterometallic clusters, Fe2Mn–Mn has a minimum overpotential of 0.35 V for oxygen reduction reaction, and Fe2Co–Co possesses the smallest overpotential of 0.32 V for oxygen evolution reaction, respectively 100 and 50 mV lower than those of Pt(111) and RuO2(110) catalysts. The analysis of the potential gap of Fe2M clusters indicates that Fe2Mn, Fe2Co, and Fe2Ni clusters possess good bifunctional catalytic activity. Additionally, the catalytic activity of Fe2Mn and Fe2Co connected through 3,3′,5,5′-azobenzenetetracarboxylate linker to form Fe2M–PCN–Fe2M is explored. Compared with Fe2Mn–PCN–Fe2Mn, Fe2Co–PCN–Fe2Co, and isolated Fe2M clusters, the mixed-metal Fe2Co–PCN–Fe2Mn possesses excellent bifunctional catalytic activity, and the values of potential gap on the Mn and Co sites of Fe2Co–PCN–Fe2Mn are 0.69 and 0.70 V, respectively. Furthermore, the analysis of the electron structure indicates that constructing a mixed-metal cluster can efficiently enhance the electronic properties of the catalyst. In conclusion, the mixed-metal cluster strategy provides a new approach to further design and synthesize high-efficiency bifunctional electrocatalysts.

关键词: bimetallic metal–organic frameworks     bifunctional electrocatalyst     density functional theory     oxygen reduction reaction     oxygen evolution reaction    

concentrations of ionic silver promote the proliferation of human keratinocytes by inducing the production of reactiveoxygen species

null

《医学前沿(英文)》 2018年 第12卷 第3期   页码 289-300 doi: 10.1007/s11684-017-0550-7

摘要:

Silver-containing preparations are widely used in the management of skin wounds, but the effects of silver ions on skin wound healing remain poorly understood. This study investigated the effects of silver ions (Ag+) on the proliferation of human skin keratinocytes (HaCaT) and the production of intracellular reactive oxygen species (ROS). After treating HaCaT cells with Ag+and/or the active oxygen scavenger N-acetyl cysteine (NAC), cell proliferation and intracellular ROS generation were assessed using CCK-8 reagent and DCFH-DA fluorescent probe, respectively. In addition, 5-bromo-2-deoxyUridine (BrdU) incorporation assays, cell cycle flow cytometry, and proliferating cell nuclear antigen (PCNA) immunocytochemistry were conducted to further evaluate the effects of sub-cytotoxic Ag+ concentrations on HaCaT cells. The proliferation of HaCaT cells was promoted in the presence of 106 and 105 mol/L Ag+ at 24, 48, and 72 h. Intracellular ROS generation also significantly increased for 5–60 min after exposure to Ag+. The number of BrdU-positive cells and the presence of PCNA in HaCaT cells increased 48 h after the addition of 106 and 105 mol/L Ag+, with 105 mol/L Ag+ markedly increasing the cell proliferation index. These effects of sub-cytotoxic Ag+ concentrations were repressed by 5 mmol/L NAC. Our results suggest that sub-cytotoxic Ag+ concentrations promote the proliferation of human keratinocytes and might be associated with a moderate increase in intracellular ROS levels. This study provides important experimental evidence for developing novel silver-based wound agents or dressings with few or no cytotoxicity.

关键词: ionic silver     human keratinocyte     cell proliferation     reactive oxygen species     active oxygen scavenger     NAC    

NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis

Gang WANG

《医学前沿(英文)》 2009年 第3卷 第1期   页码 1-7 doi: 10.1007/s11684-009-0018-5

摘要: Reactive oxygen species (ROS) are small molecule metabolites of oxygen that are prone to participate in redox reactions their high reactivity. Intracellular ROS could be generated in reduced nicotinamide-adenine dinucleotidephosphate (NADPH) oxidase-dependent and/or NADPH oxidase-independent manners. Physiologically, ROS are involved in many signaling cascades that contribute to normal processes. One classical example is that ROS derived from the NADPH oxidase and released in neurotrophils are able to digest invading bacteria. Excessive ROS, however, contribute to pathogenesis of various human diseases including cancer, aging, dimentia and hypertension. As signaling messengers, ROS are able to oxidize many targets such as DNA, proteins and lipids, which may be linked with tumor growth, invasion or metastasis. The present review summarizes recent advances in our comprehensive understanding of ROS-linked signaling pathways in regulation of tumor growth, invasion and metastasis, and focuses on the role of the NADPH oxidase-derived ROS in cancer pathogenesis.

关键词: free radicals     tumor     phox     cell proliferation     cancer therapy    

Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR

Jun Song, Yeping Huang, Wenjian Zheng, Jing Yan, Min Cheng, Ruxing Zhao, Li Chen, Cheng Hu, Weiping Jia

《医学前沿(英文)》 2018年 第12卷 第6期   页码 697-706 doi: 10.1007/s11684-018-0655-7

摘要:

Oxidative stress induced by free fatty acid aggravates endothelial injury, which leads to diabetic cardiovascular complications. Reduction of intracellular oxidative stress may attenuate these pathogenic processes. The dietary polyphenol resveratrol reportedly exerts potential protective effects against endothelial injury. This study determined whether resveratrol can reduce the palmitic acid (PA)-induced generation of reactive oxygen species (ROS) and further explored the underlying molecular mechanisms. We found that resveratrol significantly reduced the PA-induced endothelial ROS levels in human aortic endothelial cells. Resveratrol also induced endothelial cell autophagy, which mediated the effect of resveratrol on ROS reduction. Resveratrol stimulated autophagy via the AMP-activated protein kinase (AMPK)-mTOR pathway. Taken together, these data suggest that resveratrol prevents PA-induced intracellular ROS by autophagy regulation via the AMPK-mTOR pathway. Thus, the induction of autophagy by resveratrol may provide a novel therapeutic candidate for cardioprotection in metabolic syndrome.

关键词: resveratrol     reactive oxygen species     AMPK     mTOR     autophagy    

Reactive oxygen species generation is essential for cisplatin-induced accelerated senescence in hepatocellular

null

《医学前沿(英文)》 2014年 第8卷 第2期   页码 227-235 doi: 10.1007/s11684-014-0327-1

摘要:

Accelerated senescence is important because this process is involved in tumor suppression and has been induced by many chemotherapeutic agents. The platinum-based chemotherapeutic agent cisplatin displays a wide range of antitumor activities. However, the molecular mechanism of cisplatin-induced accelerated senescence in hepatocellular carcinoma (HCC) remains unclear. In the present study, the growth inhibitory effect of cisplatin on HepG2 and SMMC-7721 cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cellular senescence was then assessed by β-galactosidase assay. Senescence-related factors, including p53, p21, and p16, were evaluated by quantitative reverse transcription-polymerase chain reaction. Reactive oxygen species (ROS) was analyzed by flow cytometry. Our results revealed that cisplatin reduced the proliferation of HepG2 and SMMC-7721 cells in a dose- and time-dependent manner. Senescent phenotype observed in cisplatin-treated hepatoma cells was dependent on p53 and p21 activation but not on p16 activation. Furthermore, cisplatin-induced accelerated senescence depended on intracellular ROS generation. The ROS scavenger N-acetyl-L-cysteine also significantly suppressed the cisplatin-induced senescence of HepG2 and SMMC-7721 cells. In conclusion, our results revealed a functional link between intracellular ROS generation and cisplatin-induced accelerated senescence, and this link may be used as a potential target of HCC.

关键词: reactive oxygen species     senescence     cisplatin     hepatocellular carcinoma    

3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly activebifunctional electrocatalyst for hydrogen and oxygen evolution reactions

Miaomiao Tong, Lei Wang, Peng Yu, Xu Liu, Honggang Fu

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 417-424 doi: 10.1007/s11705-018-1711-1

摘要:

A highly active bi-functional electrocatalyst towards both hydrogen and oxygen evolution reactions is critical for the water splitting. Herein, a self-supported electrode composed of 3D network nanostructured NiCoP nanosheets grown on N-doped carbon coated Ni foam (NiCoP/NF@NC) has been synthesized by a hydrothermal route and a subsequent phosphorization process. As a bifunctional electrocatalyst, the NiCoP/NF@NC electrode needs overpotentials of 31.8 mV for hydrogen evolution reaction and 308.2 mV for oxygen evolution reaction to achieve the current density of 10 mA·cm2 in 1 mol·L1 KOH electrolyte. This is much better than the corresponding monometal catalysts of CoP/NF@NC and NiP/NF@NC owing to the synergistic effect. NiCoP/NF@NC also exhibits low Tafel slope, and excellent long-term stability, which are comparable to the commercial noble catalysts of Pt/C and RuO2.

关键词: bimetallic phosphides     N-doped carbon     self-support     hydrogen evolution     oxygen evolution    

Relationship between reactive oxygen species and sodium-selenite-induced DNA damage in HepG2 cells

ZOU Yunfeng, NIU Piye, GONG Zhiyong, YANG Jin, YUAN Jing, WU Tangchun, CHEN Xuemin

《医学前沿(英文)》 2007年 第1卷 第3期   页码 327-332 doi: 10.1007/s11684-007-0063-x

摘要: Selenium compounds, as an effective chemopreventive agent, can induce apoptosis in tumor cells. Reactive oxygen species (ROS) are important mediators in apoptosis induced by various stimuli, which include chemopreventive agents. In this study, we investigated the relationship between ROS and the levels of DNA damage induced by selenite in HepG2 cells. After HepG2 cells were treated with selenite, there was a dose-dependent decrease in cell viability. The levels of ROS induced by selenite were measured by 2′, 7′-dichlorofluorescein diacetate (DCFH-DA) fluorescence, which shows a dose- and time-dependent increase in HepG2 cells. The levels of DNA damage in HepG2 increased in all cells treated with an increasing dose of selenite at 0, 2.5, 5, 10, and 20 μmol/L. N-acetylcysteine (NAC), a known antioxidant, increased cell viability and decreased ROS generation. Moreover, NAC effectively blocked DNA damage induced by selenite. These results revealed that ROS might play an important role in selenite-induced DNA damage that can be reduced by NAC treatment.

关键词: NAC     N-acetylcysteine     DNA     fluorescence     relationship    

Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1125-1138 doi: 10.1007/s11705-021-2116-0

摘要: Crystalline materials with specific facet atomic arrangements and crystal facet structures exhibit unique functions according to their facet effects, quantum size effects and physical and chemical properties. In this study, a novel high-exposure (110) facet of bismuth oxyiodide (BiOI) was prepared (denoted as BiOI-110), and designed as nanosheets rich in oxygen vacancies by crystal facet design and regulation. Graphitic carbon nitride was designed as curved carbon nitride with dibromopyrazine, denoted as DCN, which contributed to a significant structural distortion in plane symmetry and improved the separation of charge carriers. Novel heterostructured BiOI-110/DCN nanosheets with a high-exposure (110) facet and abundant oxygen vacancies were successfully designed to enhance the photocatalytic degradation of organic pollutants. It was demonstrated that complete and tight contact between BiOI-110 and DCN was achieved by changing the size and crystal facet of BiOI. Oxytetracycline (OTC) and methyl blue dyes were used as targets for pollutant degradation, and 85.6% and 96.5% photocatalytic degradation efficiencies, respectively, were observed in the optimal proportion of 7% BiOI-110/DCN. The experimental results and electron spin resonance analysis showed that •O2 and h+ played a major role in the process of pollutant degradation. Additionally, high-resolution liquid chromatography-mass spectrography was used to identify the reaction intermediates of OTC, and the possible degradation pathway of this pollutant was proposed. Finally, the excellent reusability of BiOI-110/DCN nanomaterials was confirmed, providing a new approach for the removal of antibiotics that are difficult to biodegrade. Overall, crystal facet design has been proven to have broad prospects in improving the water environment.

关键词: high-exposure (110) facet     oxygen vacancy-rich     BiOI-110/DCN heterojunction     photocatalytic degradation     visible-light-response    

Association of gene variants with juvenile amyotrophic lateral sclerosis

《医学前沿(英文)》 doi: 10.1007/s11684-023-1005-y

摘要: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons, and it demonstrates high clinical heterogeneity and complex genetic architecture. A variation within TRMT2B (c.1356G>T; p.K452N) was identified to be associated with ALS in a family comprising two patients with juvenile ALS (JALS). Two missense variations and one splicing variation were identified in 10 patients with ALS in a cohort with 910 patients with ALS, and three more variants were identified in a public ALS database including 3317 patients with ALS. A decreased number of mitochondria, swollen mitochondria, lower expression of ND1, decreased mitochondrial complex I activities, lower mitochondrial aerobic respiration, and a high level of ROS were observed functionally in patient-originated lymphoblastoid cell lines and TRMT2B interfering HEK293 cells. Further, TRMT2B variations overexpression cells also displayed decreased ND1. In conclusion, a novel JALS-associated gene called TRMT2B was identified, thus broadening the clinical and genetic spectrum of ALS.

关键词: TRMT2B     amyotrophic lateral sclerosis     mitochondrial complex I     tRNA methylation     reactive oxygen species    

Catalytic combustion of methane over a highly active and stable NiO/CeO

Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu

《化学科学与工程前沿(英文)》 2020年 第14卷 第4期   页码 534-545 doi: 10.1007/s11705-019-1821-4

摘要: In the last decades, many reports dealing with technology for the catalytic combustion of methane (CH ) have been published. Recently, attention has increasingly focused on the synthesis and catalytic activity of nickel oxides. In this paper, a NiO/CeO catalyst with high catalytic performance in methane combustion was synthesized via a facile impregnation method, and its catalytic activity, stability, and water-resistance during CH combustion were investigated. X-ray diffraction, low-temperature N adsorption, thermogravimetric analysis, Fourier transform infrared spectroscopy, hydrogen temperature programmed reduction, methane temperature programmed surface reaction, Raman spectroscopy, electron paramagnetic resonance, and transmission electron microscope characterization of the catalyst were conducted to determine the origin of its high catalytic activity and stability in detail. The incorporation of NiO was found to enhance the concentration of oxygen vacancies, as well as the activity and amount of surface oxygen. As a result, the mobility of bulk oxygen in CeO was increased. The presence of CeO prevented the aggregation of NiO, enhanced reduction by NiO, and provided more oxygen species for the combustion of CH . The results of a kinetics study indicated that the reaction order was about 1.07 for CH and about 0.10 for O over the NiO/CeO catalyst.

关键词: methane combustion     NiO/CeO2 catalyst     interaction     oxygen vacancy     kinetic study    

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

Xiong PENG, Travis J. OMASTA, Justin M. ROLLER, William E. MUSTAIN

《能源前沿(英文)》 2017年 第11卷 第3期   页码 299-309 doi: 10.1007/s11708-017-0495-1

摘要: A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and both cyclic and linear sweep voltammetry using a rotating disk electrode (RDE). During the RDE testing, the half-wave potential of the Pd-Cu/Vulcan catalyst was 50 mV higher compared to that of commercial Pt/C catalyst for the oxygen reduction reaction (ORR) in alkaline media. The Pd-Cu/Vulcan exhibited a specific activity of 1.27 mA/cm and a mass activity of 0.59 A/mg at 0.9 V, which were 4 and 3 times greater than that of the commercial Pt/C catalyst, respectively. The Pd-Cu/Vulcan catalyst also showed higher alkaline exchange membrane fuel cell (AEMFC) performance, with operating power densities of 1100 MW/cm operating on H /O and 700 MW/cm operating on H /Air (CO -free), which were markedly higher than those of the commercial Pt/C. The Pd-Cu/Vulcan catalyst also exhibited high stability during a short-term, AEMFC durability test, with only around 11% performance loss after 30 hours of operation, an improvement over most AEMFCs reported in the literature to date.

关键词: alkaline exchange membrane (AEM)     fuel cell     Pd-Cu     oxygen reduction     high performance     water    

Visible light induces bacteria to produce superoxide for manganese oxidation

《环境科学与工程前沿(英文)》 2023年 第17卷 第2期 doi: 10.1007/s11783-023-1619-y

摘要:

● Term of manganese-oxidizing microorganisms should be reconsidered.

关键词: Mn(II) oxidation     Manganese-oxidizing bacteria     Reactive oxygen species     Mn(III/IV) oxides    

标题 作者 时间 类型 操作

Activity and characteristics of “Oxygen-enrichedhighly reactive absorbent for simultaneous flue gas

Yi ZHAO,Tianxiang GUO,Zili ZANG

期刊论文

应用先进技术改造传统炼铜产业

孔繁义

期刊论文

Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine

K. RAJKUMAR, P. GOVINDARAJAN

期刊论文

Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reductionand oxygen evolution reaction: a density functional theory study

期刊论文

concentrations of ionic silver promote the proliferation of human keratinocytes by inducing the production of reactiveoxygen species

null

期刊论文

NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis

Gang WANG

期刊论文

Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR

Jun Song, Yeping Huang, Wenjian Zheng, Jing Yan, Min Cheng, Ruxing Zhao, Li Chen, Cheng Hu, Weiping Jia

期刊论文

Reactive oxygen species generation is essential for cisplatin-induced accelerated senescence in hepatocellular

null

期刊论文

3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly activebifunctional electrocatalyst for hydrogen and oxygen evolution reactions

Miaomiao Tong, Lei Wang, Peng Yu, Xu Liu, Honggang Fu

期刊论文

Relationship between reactive oxygen species and sodium-selenite-induced DNA damage in HepG2 cells

ZOU Yunfeng, NIU Piye, GONG Zhiyong, YANG Jin, YUAN Jing, WU Tangchun, CHEN Xuemin

期刊论文

Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the

期刊论文

Association of gene variants with juvenile amyotrophic lateral sclerosis

期刊论文

Catalytic combustion of methane over a highly active and stable NiO/CeO

Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu

期刊论文

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

Xiong PENG, Travis J. OMASTA, Justin M. ROLLER, William E. MUSTAIN

期刊论文

Visible light induces bacteria to produce superoxide for manganese oxidation

期刊论文